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We study the superconducting transition temperature, Tc, of an array of fluctuating, maximally gapped
interacting ladders, embedded in a disordered plane. Renormalization group analysis indicates that geometrical
fluctuations mitigate the suppression of the intraladder pairing correlations by the disorder. In addition, the
fluctuations enhance the Josephson tunneling between the ladders. Both effects lead to an increase in Tc in the
Josephson-coupled array. These findings may be relevant to the understanding of the 1/8 anomaly in the
lanthanum based high-temperature superconductors.

DOI: 10.1103/PhysRevB.79.014509 PACS number�s�: 74.81.�g, 74.40.�k, 74.62.Dh

I. INTRODUCTION

Both perturbative renormalization-group �RG� studies1

and strong-coupling numerical calculations2 have demon-
strated that doped t-J and Hubbard ladders typically exhibit a
maximally gapped phase with a single remaining gapless
charge mode protected by symmetry.3 Such a phase pos-
sesses substantial superconducting pairing correlations with
approximate d-wave symmetry. By coupling many ladders
together via Josephson tunneling, the phases of the different
Cooper pairs may establish coherence, in which case global
superconductivity ensues. It has been suggested that the un-
derlying mechanism of superconductivity in the cuprates is
essentially the one described here for the quasi-one-
dimensional system.4,5

Previous studies have shown that Josephson-coupled ar-
rays of spin-gapped chains and two-leg ladders are particu-
larly prone to the deleterious effects of disorder on Tc.

6,7 On
the other hand, we have demonstrated that geometrical fluc-
tuations of a spin-gapless one-dimensional system tend to
reduce the effects of disorder.8 It is therefore interesting to
try and marry these two observations, and study the interplay
between disorder and fluctuations in a quasi-one-dimensional
superconductor. Beyond its purely theoretical appeal this
question may also be relevant to a distinctive feature in the
phenomenology of the lanthanum based cuprates.

Among the high-temperature superconductors, the lantha-
num compounds stand out as the ones with the most exten-
sive experimental evidence for the existence of quasi-one-
dimensional charge and spin stripe orders, both in their
“normal” and superconducting states.9,10 Experiments have
also found clear correlation between the presence of robust
static stripe order and the suppression of superconductivity
in these materials.10 For example, in La1.6−xNd0.4SrxCuO4 the
ordering temperature, Tm, of the incommensurate magnetic
structure reaches a maximum around x=1 /8 while the super-
conducting temperature, Tc, exhibits a substantial dip there.
This 1/8 anomaly was first identified in La2−xBaxCuO4,11

where it is especially pronounced. In view of the theoretical
insights outlined above, it is tempting to associate the sup-
pression of Tc with enhanced disorder effects due to the
slowing down of the stripe fluctuations.

Motivated by such questions we study in this paper a
model of a fluctuating disordered array of maximally gapped
n-leg ladders. We find that the fluctuations reduce the
disorder-induced degradation of the pairing correlations on
each one-dimensional system although they typically do not
change the critical value of the Luttinger interaction param-
eter, K�, above which infinitesimal disorder is irrelevant. The
latter is a decreasing function of the width n. Moreover, the
fluctuations enhance the Josephson tunneling between the
ladders. Both of these effects lead to a higher Tc for the array.

II. SINGLE LADDER MODEL

We begin by considering a single fluctuating n-leg ladder.
We assume that the fluctuations occur on length scales which
are long compared to the electronic wavelength and thus ne-
glect backscattering from them. Specifically, we treat the
limit where the ladder oscillates rigidly inside a parabolic
potential. Its state is given by the deviation u��� from the
bottom of the well �taken in the following as the x axis�, and
its action in imaginary time is

Su =� d��M

2
���u�2 +

M�0
2

2
u2� , �1�

where M is the ladder’s effective mass. The fluctuations are
characterized by the oscillation frequency �0 and by their
typical amplitude �=1 /�M�0.

The noninteracting spectrum of the ladder consists of n
energy bands. We assume that the filling is such that all of
them cross the Fermi level. If this is not the case, then, in the
following, n should be taken as the number of bands that do
cross EF. Each of those does so at two Fermi points �kF

�b�

with one containing left-moving �r=−1� and the other right-
moving �r=1� particles. The annihilation operator of an elec-
tron in band b with chirality r and spin projection �= �1
can be expressed using bosonization language as
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�b,r,��x� =
Fb,r,�

�2	a
eirkF

�b�x−�i/�2��
c
�b�−r�c

�b�+�
s
�b�−�r�s

�b���x�, �2�

where the Klein factors Fb,r,� ensure the correct anticommu-
tation between the different particle species and a is a short-
distance cutoff of the order of kF

−1. Physically, �c
�b� and �s

�b�

are, respectively, the phases of the 2kF
�b� charge and spin-

density wave fluctuations in band b, while 
c
�b� is the super-

conducting phase of the band.
When the electronic interactions are turned on, one finds

for generic densities away from half filling that the system
ends up in a phase where all the spin fields �s

�b� and all the
relative charge modes 
c

�a�−
c
�b� acquire a gap.1,2 Conse-

quently, the pronounced fluctuations of their conjugated
fields 
s

�b� and �c
�a�−�c

�b�, cause their correlations to decay
exponentially to zero. In this so-called C1S0 phase the only
gapless excitations are created by the total charge fields

�c+ =
1
�n

	
b=1

n

�c
�b�, 
c+ =

1
�n

	
b=1

n


c
�b�. �3�

Note that if the interaction strength is larger than the band-
structure gaps, the number of occupied bands may change
relative to the occupancy of the bare spectrum, and n should
be adjusted correspondingly.

The plane containing the ladder is taken to include a weak
random potential which couples to the electrons and through
them to u. This choice is motivated by the situation in the
cuprates where the “ladders” are defined by the sites occu-
pied by holes, and as such interact with the disorder only
indirectly via the electronic degrees of freedom. Conse-
quently, the forward, V��r�, and backward-scattering, V�r�,
disorder components couple as

Hdis =� dx 	
a,b,j=1

n

�ha,b
� �x,yj� + ha,b

 �x,yj�� + H.c., �4�

where yj = jd+u, with d as the interleg distance, and

ha,b
�,�r� = 	

r,�
eir�kFa

�kFb
�xVa,b,r

�, �r��a,r,�
† �x��b,�r,��x�


 	
r,�

Va,b,r
�, �r�
2	a

e−i�	/2��,�a,b,r,���x�. �5�

The exponents in Eq. �5� are given by

��,�a,b,r,�� = r��c
�a� � �c

�b�� − �
c
�a� − 
c

�b��

+ r���s
�a� � �s

�b�� − ��
s
�a� − 
s

�b�� . �6�

They vanish for the intraband forward-scattering processes
and instead these terms take the form

ha,a
� �r� 
 Va,a

� �r��na +
�2

	
�x�c

�a�� , �7�

where na is the average electronic density in band a. Assum-
ing a short-range Gaussian disorder, one finds that its com-
ponents obey

Va,b,r
� �x,yj��Va�,b�,r�

� �x,yj���
�

= DBa,b
j,j���r,r��a,a��b,b� + �r,−r��a,b��b,a��

���x − x����yj − yj�� ,

and

Va,b,r
 �x,yj��Va�,b�,r�

 �x,yj���
� = DBa,b

j,j��r,r���a,a��b,b�

+ �a,b��b,a����x − x����yj − yj�� .

Here, D is the disorder strength and Ba,b
j,j� are numbers of

order unity which depend on the details of the band structure.
In the following we focus on the physics at energies of the

order of the interladder couplings, which we assume lie well
below the scale �, set by the gaps of the massive modes.
Under such conditions the latter can be replaced by their
nonvanishing expectation values, thus yielding

��,�a,b,r,�� = r��c
�a� � �c

�b�� − ��
s
�a� − 
s

�b�� + c�,�a,b,r,�� ,

�8�

where c�,�a ,b ,r ,�� are constants. All the ��, contain fields
conjugated to the massive modes, whose correlation func-
tions decay exponentially. As a result, except for the intra-
band forward-scattering part �whose effects we discuss in
Sec. III�, the bare disorder potential coupling �Eq. �4�� is
irrelevant in the RG sense. However, higher order terms,
generated in the course of the RG by integrating over the
massive modes, may be relevant.7,12 To obtain the structure
of these terms, which are the ones responsible for the degra-
dation of the pairing correlations on the ladder, we need to
consider all possible linear combinations of the ��, with
integer coefficients. The most relevant coupling is that
which, on the one hand, contains the gapless field �c+ with
the smallest coefficient in front of it and on the other hand
contains no gapped fields. Equation �8� indicates that this
coupling is generically13 generated by 	b=1

n ��b ,b ,r ,�� and
takes the form 2	b=1

n �c
�b�=2�n�c+. Consequently, the scatter-

ing by the effective disorder is described by

Heff-dis =� dx
Veff�x,u�

2	�
ei�2n�c+�x� + H.c., �9�

where � is of the order of the correlation length v /� of the
gapped fields, with v being their typical velocity.14 The lead-
ing contribution to the effective disorder satisfies

Veff�x ,y�Veff
� �x� ,y��=Deff��x−x����y−y��, with

Deff 
 D�D/a��2�n−1��/�0��n−1�/2��/a�n+1. �10�

Hence, after averaging over the disorder and the ladder
dynamics, as described by Eq. �1�, we are led to consider the
following action for the C1S0 phase of the n-leg ladder
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S =
1

	
� dxd��− i�x
c+���c+ +

vc+Kc+

2
��x
c+�2 +

vc+

2Kc+
��x�c+�2� − Deff� dxd�d��

�2	��2 F�� − ���cos�2n��c+�x,�� − �c+�x,����� ,

�11�

where the fluctuation kernel is given by8

F�� − ��� = ���u��� − u������ =
1

�2	�

1

�1 − e−w0��−���
.

�12�

III. RG ANALYSIS

The RG analysis of this action is most naturally formu-
lated in terms of the following dimensionless parameters:

D =
nDeff�

�2	3�vc+
2

, � =
��0

vc+
,

K = Kc+ −
D
4
� 4

n2 + Kc+
2 ��

0

1

ds
1

�1 − e−�s
. �13�

Note that the parameter K is no longer a pure measure of the
electronic interactions but is rather an admixture of the inter-
actions and the disorder.15 However, it is K which controls
the asymptotic decay of the various correlation functions.16

The resulting RG flow equations, with respect to the running
cutoff ����=�e�, are

dK

d�
= −

1

2

D
�1 − e−�

K2,
dD
d�

= �3 − nK�D ,

d�

d�
= � −

4LD
n

�cosh � − 1�
�1 − e−��3/2 ,

d�

d�
= −

2LD
n

�1 − cosh � + � sinh ��
��1 − e−��3/2 � , �14�

with the dimensionless ladder length L=L /2	� scaling as
dL /d�=−L. The details of their derivation are presented in
Ref. 8.

The RG flow �Eq. �14�� implies that infinitesimal disorder
is irrelevant for K�K�=3 /n, independent of the fluctuations.
More important, however, are the effects of fluctuations in
the presence of finite disorder. First, since D��−n�0

−�n−1�/2

�see Eqs. �10� and �13�� large amplitude and frequency os-
cillations tend to decrease the initial strength of the effective
disorder. Second, Eq. �14� shows that the disorder is more
efficient in renormalizing K for smaller oscillation frequen-
cies and that it drives � toward this regime. Due to both
mechanisms, stronger and faster fluctuations cause K to flow
more slowly to smaller values. Consequently, the ladder’s
superconducting pairing correlations, which decay as x−1/nK,
are less degraded by the disorder. As demonstrated below,

these stronger pairing correlations translate into an increase
in Tc for the Josephson-coupled array.

A few comments are appropriate at this point. First, note
that formally the static ladder limit is reached in our model
by taking �→0, �0→�, in order to keep the ladder in its
ground state inside the well. Second, as mentioned in Sec. II,
the intraband forward-scattering terms �Eq. �7�� survive in
the gapped phase. They are relevant in the RG sense: the
dimensionless strengths of the parts which couple to the av-
erage band density and to its long-wavelength fluctuations
scale as dD f ,1 /d�=3D f ,1 and dD f ,2 /d�=D f ,2, respectively.
These processes can be shown not to affect the pairing cor-
relations in the static limit16 or more generally when �0
→�. However, for finite �0 they induce a retarded attraction
between the electrons via exchange of the ladder’s oscillation
quanta. This attraction tends to renormalize K toward higher
values and enhance pairing, thus reinforcing the effects out-
lined above. The intraband forward-scattering processes do
contribute to the localization of the ladder since they provide
additional channels for its coupling to the disorder �beyond
the one contained in Eq. �11��. Consequently, in the last two
flow equations of set �14�, one should substitute D→D
+D f ,1+D f ,2. Due to its large scaling dimension D f ,1 is par-
ticularly effective in localizing the ladder.

Finally, one should also take into account the renormal-
ization of K at energy scales which span the range between
EF and �, i.e., during the generation of the gaps which define
the C1S0 phase. Perturbative RG analysis of the single chain
problem8,16 indicates that K renormalizes by an amount of
the order of D /vF�� during this stage. In the following we
assume that D�vF�� and ignore this “high energy” renor-
malization. Moreover, such a condition is necessary in order
to ensure that disorder does not destroy the gaps. Since the
size of the gaps is known to decrease rapidly with the num-
ber of legs,4,5,17 the region of applicability of our treatment
shrinks correspondingly with n.

IV. COUPLED LADDERS

Next, we consider an array of coupled C1S0 n-leg lad-
ders. The arguments leading to Eq. �9� imply that the most
relevant interladder charge-density wave �CDW� coupling,
V, is the 2nkF CDW coupling. Its scaling dimension, 2−nK,
makes it more relevant than the Josephson tunneling only
once K�1 /n. Moreover, ha,a

� , which we neglected in this
work, is known to suppress V exponentially.16 Interladder q

0 couplings also promote J over V.18 Owing to these rea-
sons and our interest in applications to the superconducting
cuprates, we assume that the Josephson tunneling between
adjacent ladders dominates over their CDW coupling. Hence
we analyze the effect of
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HJ = −� dx	
�i,j�

	
a,b=1

n

Jab�ui − uj��a
i †�b

j + H.c., �15�

with �a
i =�a,+,↓

i �a,−,↑
i +�a,−,↓

i �a,+,↑
i as the singlet superconduct-

ing order parameter in band a of the ith ladder. The Joseph-
son tunneling amplitude depends, exponentially, on the inter-
ladder separation, Jab
J0e−�s+ui−uj�/�, where s is the mean
spacing of the array and � depends on the environment be-
tween the ladders.19 Assuming ��s, in order to remain in
the quasi-one-dimensional limit, we obtain for HJ in the
C1S0 phase,

HJ = −� dx	
i

Je�ui−ui+1�/�

�2	��2 cos��2

n
�
c+

i+1 − 
c+
i �� , �16�

where14 J=8	a,b=1
n Jab�0��cos��2�s

�a����cos��2�s
�b���. Its con-

tribution to the RG flow, in terms of J=J /2	�nvc+, and
derived assuming20 J ,� /��1, is

�K

��
= J2�1 +

�2

�2 �1 + e−���,
�J
��

= �2 −
1

nK
�J ,

��

��
= � − 2n	2LJ2�2

�2 �1 + I0���� ,

��

��
= n	2LJ2�3

�2

1 + I0��� − �I1���
�

, �17�

where I0,1�x� are modified Bessel functions.
By integrating Eqs. �14� and �17� one can calculate the

scale, ��, at which J grows to be of order 1 and obtain an
estimate for the transition temperature of the array Tc


�e−��
. Since fluctuations tend to increase K via its renor-

malization by both D and J and since K controls the scaling
of J, Tc likewise rises. Another estimate for Tc can be de-
rived using the interladder mean-field theory.6,7,21 By replac-

ing Je�ui−uj�/�→ J̃=2J�e�ui−uj�/��=2Je�2/2�2
and cos��2 /n�
c+

i

−
c+
j ��→ �cos��2 /n
c+��cos��2 /n
c+� in HJ, the problem

turns into that of a single ladder described by Eq. �11� and
coupled to an effective field,

HJ → −� dx
W

�2	��2cos��2/n
c+� , �18�

induced by the neighboring ladders and determined self-

consistently from W= J̃�cos��2 /n
c+��. At Tc, when W is
vanishingly small, this condition reads

1

J̃
=

1

�2	��2� dx�
0

1/Tc

d�P�x,�� , �19�

with P�x ,��= �cos��2 /n
c+�x ,���cos��2 /n
c+�0,0��� calcu-
lated using action �11�. Approximating the effect of tempera-
ture by a cutoff length lT=vc+ /T beyond which all correlators
decay exponentially to zero, and using the scaling properties
of P, Eq. �19� becomes6,7

1

J̃
= �

�

vc+/Tc RdR

4	vc+�2exp�− �
0

ln�R/�� d�

nK���� , �20�

where K��� is calculated from Eq. �14�.
Results for the ratio of Tc to the transition temperature of

the pure system, in the case n=2, are presented in Fig. 1. The
effect of the fluctuations on Tc is substantial22 and is particu-
larly important whenever D is more relevant than J, i.e., for
K� �1+�5� /2n. Figure 1 was generated for fixed bare D,
ignoring the dependence of the effective disorder on �0, as
given by Eq. �10�. Taking this dependence into account will
only make the mitigating consequences of the fluctuations
more pronounced. Additional amplification of the physics
discussed here occurs when shape deformations of the lad-
ders are taken into account.8

V. DISCUSSION

Our study was motivated by the physics of the cuprate
high-temperature superconductors, especially the 214 com-
pounds, which exhibit both static and fluctuating charge and
spin stripe orders over a substantial portion of their phase
diagram.4,5 In particular, we were interested in gaining in-
sight into the anomalous suppression of Tc at x=1 /8, which
is manifested to various degrees in these systems. One
should be cautious, however, when trying to apply the model
studied here to the physical materials. To begin with, we
have considered the quasi-one-dimensional limit of weakly
coupled ladders. This limit allows for a controlled theoretical
treatment of the problem but is an extreme caricature of the
actual charge modulation observed in the cuprates, whose
amplitude is difficult to ascertain but which is most likely
weak. We then assumed smooth long-wavelength fluctua-
tions and ignored lattice commensurability effects, which are
believed to be important in the slowing down of the stripe
dynamics at x=1 /8. In a related approximation we did not
include fluctuations of the stripe order toward a similar order
oriented along the perpendicular direction. Recent scanning
tunneling spectroscopy23 demonstrated domains of perpen-
dicular stripe orientations in Bi2Sr2CaCu2O8+�. It is conceiv-
able, however, that in the low temperature tetragonal phase
of La2−xBaxCuO4, where the in-plane rotational symmetry is
broken and the x=1 /8 anomaly is observed, such an approxi-
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FIG. 1. Tc of an array of two-leg ladders as obtained by inte-
grating the RG Eqs. �14� and �17� �solid line� and from the mean-
field theory �Eq. �20�� �broken line�. The results are for a system
with bare K=0.7, J=10−2, D=10−4, � /�=10−3, and L=10.
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mation is not too severe. Finally, the striped model possesses
a large spin gap, which implies the absence of gapless nodal
quasiparticles in the superconducting phase �although it ex-
hibits a “d-wave-like” order parameter�. The same spin gap
means that the model does not contain any of the low-energy
incommensurate spin excitations, which are the primary ex-
perimental evidence for stripes. These excitations originate
from the intervening lightly doped regions between the
charged stripes. However, apart from acting as effective bar-
riers for tunneling between the stripes �as characterized by
the phenomenological length � in Eq. �16��, they have little
effect on the charge response of the system governing its
superconducting susceptibility, which is the focal point of the
present study.

Notwithstanding, our model constitutes a controlled theo-
retical laboratory for the study of the interplay between the

stripe dynamics and the disorder. Provided that � is empiri-
cally associated with the distance from x=1 /8 in the phase
diagram of the lanthanum based cuprates, then Fig. 1 offers a
mechanism for the Tc anomaly at x=1 /8. It suggests that the
above mentioned interplay plays an important role in allevi-
ating, at least partially, the disorder-induced suppression of
superconductivity in these compounds.
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